If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-36x+162=0
a = 1; b = -36; c = +162;
Δ = b2-4ac
Δ = -362-4·1·162
Δ = 648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{648}=\sqrt{324*2}=\sqrt{324}*\sqrt{2}=18\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-18\sqrt{2}}{2*1}=\frac{36-18\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+18\sqrt{2}}{2*1}=\frac{36+18\sqrt{2}}{2} $
| (x-6)(x-2)*3(x+6)=96 | | 9.08x+3.59(8x-4)=12.05x+0.5616 | | 4x-2=6x-12 | | Y=12y-16 | | -4h+3=11 | | 10+6x=4x-2 | | -4(2x−3)=44 | | 81x-2=272x-4 | | 9(x+5)=-14 | | (4x+3)=(6x-4) | | 6(4w+5)=3(w+3) | | 13a-13=91 | | -7x-3+2=-10x+9 | | 2/n+1=1/n | | 5(5n+4)=120 | | 5(3v-1)=55 | | 7(2-3y)=2y | | 5t-2(-3)=33 | | 5(w+1)=-20 | | 3(1-3t)=2t | | 11d=17+12d | | 4(1+n)=6 | | 100-2w=50+3w | | 4x-7=-59 | | 3(t-2)=5 | | 25=n-9 | | 3x=−5x−32 | | (3/5)p+18=24 | | X–32=14-6x | | 300=6x+50 | | 18x+11=15-12x/5 | | (5x-1)/(x+8)=2x-4 |